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1. Introduction: Model Analysis 
 
Agent-based social simulation relies upon the precise specification of a model 

in, typically, a computer programming language such as C++ or Prolog, or a 
multi-agent system oriented software environment such as SWARM or SDML, 
and then the repeated execution of the model on a computer to acquire sufficient 
experimental data for reliable conclusions about its behaviour to be drawn. 
However, as has long been recognised, this is not the only possible way to 
proceed (e.g. Doran and Gilbert, 1994, section 1.2.2; Teran, Edmonds, and Wallis, 
2001; Gilbert and Troitzsch, 2005). A model’s structure can sometimes be directly 
analysed to obtain information about its behaviour without its ever being 
executed. This can be a much faster means of obtaining properties of a large and 
complex model than are systematic experimental trials (see Doran, 2005, 2006). 
Furthermore, such analysis is arguably more natural in the sense that it 
corresponds more directly to the mental processes of human beings when they 
reflect upon dynamic systems and their behaviour. 

However, it is also true that direct analysis of computer programs is very 
difficult, often intractable. This prompts consideration of production systems (in 
the computer science sense e.g. Wulf et al, 1981 pp 550-555; Russell and Norvig, 
1995, p 314). In effect, production systems are programs in a certain class of 
specialised “programming languages” (CLIPS is a well known example – see, for 
example, Giarratano and Riley, chapters 7-10) that have full computational power 
but are simple in structure and hence relatively easy to analysis. We emphasise 
that production systems can capture complex social phenomena, including agents 
that learn and communicate, just as well (or as badly) as any other program1.  

Here we define a class of production systems, and hence production system 
models, and use this definition to seek to design algorithms of practical use that 
analyse realistic models, particularly as regards the agents that they contain, the 
abstractions that they support, and the interactions between agents and abstraction. 

 
2. Production Systems 
 
DEFINITION: A production system (PS) as we define it (definitions elsewhere 

vary in detail) comprises three parts: 
 

A set of variables each with its own associated possible value set. No 
variable may be associated with (i.e. bound to) more than one of its values 
at the same time. A set of bindings that associates a value with each 
variable is a state. 

 
 A set of rules each in the form 
 

set of variable/value bindings  => single variable/value binding 
 

 
1 We avoid mathematical logic based representations as they introduce complexity that seems 
unnecessary for our purposes. 
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in a suitable syntax. A rule has a “left hand side” (LHS) – the binding set -
- and a “right hand side” (RHS) – the single binding. Rules are not to be 
interpreted to specify logical entailment, but rather consequence in time. 
Given a state, the rules generate a successor state. 

 
An execution procedure that matches all rule LHSs to the existing state 
variable/value bindings and executes in parallel those rules that match by 
asserting the corresponding RHS bindings. Hence the current set of 
bindings is updated and a successor state generated. Bindings that are not 
updated by a rule execution persist unaltered to the successor state 
(compare frame axioms and their use, Russell and Norvig, 1995, page 
206).  
 

Importantly, we specify that matching rules are executed in parallel. The 
“conflict resolution” issue prominent in alternative formulations of production 
systems is thus not an issue here. It is replaced by the need to avoid assertion of 
contradictory bindings (see later). 

The execution procedure is invoked repeatedly, and a production system thus 
generates a sequence of states. More abstractly, a production system implements 
repeated invocation of a many-one mapping over the set of possible states. 

The production systems we have defined have three key properties. Firstly, 
there are no intra-rule variables, that is, rule LHSs do not have unbound variables 
that are bound during matching and the bindings then used on the RHS. Secondly, 
since matching rules are executed in parallel, the rule set of a PS must never set 
contradictory bindings, that is, it must never happen that as one rule sets X/a 
another sets X/b. Thirdly, it is assumed that value sets are finite and relatively 
small. Thus we must work with quantitative variables as if they were qualitative 
and design rules sets accordingly.  

The foregoing three requirements are imposed to make algorithmic analysis 
more tractable. They are both important and quite demanding. The burden of 
meeting them falls upon the designer of the rule set ie the “programmer”.  

 
3. Two Examples of Production System Models 
 
DEFINITION:  A production system model is a production system that is being 

used as a model.  
 
As a first example of a PS model, consider the following small set of rules that 

model an aircraft landing (or crash landing!): 
 
flight_status/in_air & engines/running & 
pilot_status/ok => flight_status/landed  

 
flight_status/landed => engines/not_running 

 
engines/running & fuel/n => fuel/(n-1)  (100 >= n >= 
1) 
 
fuel/0 => engines/not_running 
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engines/not_running => altitude/ground-level 

 
A plausible initial state is:  

 
 flight_status/in_air  
 engines/running  
 fuel/100 
 pilot_status/ok  [contrast with pilot_status/faulty] 

 
Given this initial state, then the next state will be: 

 
 flight_status/landed 
 engines/running  
 fuel/99 
 pilot_status/ok 
 

From these rules, it is easy to see that in all circumstances the aircraft must 
arrive at ground level with engines not running, whether or not pilot_status is 
initially ok. 

A second example PS model, this time modelling in outline a lecture being 
given, is the following standard lecture model: 
 
lecturer/speaking-well & content/knowledgeable  
=> class/very-interested 
 
lecturer/speaking-poorly & content/knowledgeable & 
class/bored   => class/somewhat-interested 

 
lecturer/speaking-poorly & content/knowledgeable &  
class/very-interested   => class/somewhat-interested 
lecturer/speaking-well   & content/ignorant  & class/bored           
=> class/somewhat-interested  
 
lecturer/speaking-well & content/ignorant  &  
class/very-interested    => class/somewhat-interested 

 
lecturer/speaking-poorly & content/ignorant    => 
class/bored 
 
class/bored => lecturer/speaking-well  

//the lecturer tries 
harder! 

 
lecturer/ speaking-poorly & class/somewhat-interested   
=> class/bored 
 
content/ignorant  & class/somewhat-interested  => 
class/bored 
 
 

A possible initial state for this model is: 
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 lecturer/speaking-poorly 

content/ignorant 
 class/very-interested 
 
It is reasonably easy to see by inspection of these rules that whenever content is 
ignorant there will be an oscillation in the class’s level of interest between 
somewhat-interested and bored. 
In this model there are, intuitively, just two agents: the lecturer and the class 
(collectively). In the model each of these agents comprises a single variable, 
which is counter-intuitively simple. In general an agent within such a model will 
consist of a subset of the system’s variables, some of them to be interpreted as 
representing aspects of the agent’s mental state, with associated rules. 
 
4. Analysis Algorithms 
 

Working from the foregoing definition of a production system, algorithms have 
been designed, programmed (in C) and tested to: 

 
(a) Execute a production system 
(b) Discover the prerequisite initial conditions of a specified 

state of a PS 
(c) Discover the stable states of a given PS 
(d) Generate “powerful” abstractions of a given PS model.  
(e) Identify the (minimal) agents in a given PS model 

 
Algorithm (a), RUN PS, executes a PS and is relatively straightforward. In 

pseudo-code: 
 Repeat 

{ 
Match all rule LHSs against current state and set 
RHS bindings of matching rules into current 
state, overwriting existing bindings as required 

 } 
 

Algorithm (b), PRECURSOR, uses “backward chaining” to find the precursor 
states of a particular PS model state. In the aircraft-landing model, for example, it 
enables algorithmic discovery of the fact that from all initial states the aircraft 
arrives at ground level with engines still. It also enables discovery of all initial 
states for the lecture model that lead to the class ending the lecture “very-
interested”. The algorithm is more complex than at first appears because of the 
need to handle the “frame problem” (Russell and Norvig, 1995, page 207). 

Algorithm (c), STABLE STATES, finds stable states for the production 
system, that is states that once reached are never left. Finding stable points is a 
standard and useful method of analysis for systems of differential equations. 
Indeed, systems of differential equations have much in common with production 
systems. This is illustrated by the fact that the standard methods of simulating 
systems of differential equations (e.g. Runge-Kutta) proceed by first replacing 
them by in effect a production system. 
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A stable state of the standard lecture model turns out to be: 

 
 lecturer/speaking-well 

content/knowledgeable 
 class/very-interested 
 

 
5. Abstraction of a PS Model 
 
A model of a lecture can be created at many levels of abstraction. A more 

refined model than that given above might include representations of a chairman, 
of slides and slide showing, and of a clock. More interesting and complex (and 
more obviously social) are lecture models that include representations of the 
mental states of the individual members of the class, of learning processes in 
individuals, and of interactions between class members. In fact, an elaborated 
lecture model has been created and experimented with at approaching this last 
level of detail. This is a production system with over one hundred rules. It 
includes simple representations of slides being shown, of (three) class members 
learning, and even of two of the class members playing the little game of “paper, 
scissors and stone”.  

Several researchers have investigated algorithmic abstraction of models, 
notably Zeigler (1990), Fishwick (1995), and Ibrahim Y and Scott P (2004). It is 
standard to see models that are abstractions of a base model as the outcome of 
behaviour preserving homomorphisms. The difficulty is to decide what we mean 
by “good” abstractions and actually to find them given an original base model. 
Our approach here is unusual in that we see abstraction as a process best applied 
to a production system without reference to any interpretation it may have as a 
model or to any particular type of structure (e.g. agents) that an interpretation may 
see within it. 

More specifically, a set (or “space”) of alternative abstractions of a given base 
model may be generated by sequences of abstraction steps. Here we specify an 
abstraction step to be the combination of two variables into one, with the value 
set of the new combined variable comprising the result of applying a randomly 
chosen2 many-one mapping to the cross-product set of the value sets of the two 
original variables. 

In the work reported here (algorithm (d) above, ABSTRACTION) these 
abstraction steps are used within a (heuristically guided) hill-climbing search (see 
Russell and Norvig, 1995, page 112). Successive abstraction steps are chosen and 
appended to the existing sequence of adopted abstraction steps. The choice 
between alternative abstraction steps is made by always selecting the abstraction 
step that is assessed as most promising.  

The promise of an abstraction step is essentially measured as the (inverse of 
the) number of indeterminate (ie one-many) abstracted state successions to which 
the proposed abstraction step (and preceding step sequence) gives rise from a 
 
2 Fully random choice is weak. Experimentation with heuristically guided but partially random 
choice ongoing. 
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sample of basic model state trajectories generated for the purpose. The rationale 
for this approach is that we accept a “class”, say, as an abstraction of a set of 
“students” if we find the concept of a class useful as a means to simple and sound 
predictions and explanations. 

In pseudo-code, ABSTRACTION is: 
 
 Input the base model 
 

Until no further abstraction is possible 
 { 
  Generate a set, S, of alternative abstraction 
steps 
 

Select and adopt the most promising abstraction 
step from S by testing each possible abstraction 
step on an ad hoc sample of state trajectories. 

 } 
 

Applying ABSTRACTION to the standard lecture model yields the following 
simple abstract model that highlights the possible oscillation: 
 
   V/x   => V/x 
   V/p => V/q 
   V/q => V/p 
 

This model has just one variable, and it is apparent that either the state is 
constant (V/x) or it alternates between V/p and V/q. 

Finding powerful abstractions potentially provides insight into the essential and 
significant behaviour of a model and of the phenomena that it models (compare 
Gilbert, 2006). The existing algorithm can generate a range of more abstract 
models from the standard lecture model listed above and highlights key 
behaviours. Experimental application of ABSTRACTION to the elaborated 
lecture model is ongoing. 

The strategic difference between this approach and those mentioned earlier is 
that we define abstraction operations at the “fine-grained” level – that is, at a level 
below that at which such macro-phenomena as agents are naturally considered -- 
and that we have deployed a standard search procedure to locate good abstracted 
models in the space of possible abstracted models. 

 
6. Agents in a PS Model 
 
Can a PS model contain (representations of) agents? The answer is surely yes 

(see earlier). With each agent in the model interpretation there may be associated 
a subset of the model’s set of variables, some of them reflecting presumed 
“mental” and “emotional” attributes. A subset of the rules may also be associated 
with a particular agent. Other variables and rules will represent interactions and 
the agents’ collective environment. It is thus natural to ask the following question. 
Can the agents that a model creator(s)’s interpretation of the model suggests to be 
present within it, be detected by an “objective” algorithm that has no access to the 
interpretation? 
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For example, in the foregoing lecture model there are intuitively just two 
agents, the lecturer and the class. But would an objective analysis of the 
production system itself reveal these two agents. In other words, do the agents in 
an agent-based model have a real computational existence beyond the 
interpretation read into the model by its designer and users? Should they? Can 
there be other agents in the model that its creator is not aware of, that is, which are 
in some sense emergent from the model’s structure? We suggest that the ability to 
discover the minimal agents formally present in a PS model enables comparison 
with the set of agents the model’s designer conceives as present, possibly leading 
either to modification of the model or of the model design concept. 

However, defining in computational terms just what is an agent in the context 
of a PS is difficult, and widely recognised to be so. Standard textbook definitions 
are either too specialised or too ambiguous to offer much help3. We define a 
minimal agent in a production system by reference to the notion of “influence” as 
follows (adapted from Doran, 2002): 
 

One variable in a production system is said to influence another when 
there exists at least one rule that refers to the former on its LHS and binds 
the latter on its RHS. 
 
A minimal agent is a non-empty subset of the variables of a production 
system. These variables must each be one of input, output, or internal 
variables where the meaning of these agent variable types is defined by 
reference to influence.  
 

• An input variable is influenced only by variables external to the 
agent and influences only output variables and/or variables internal 
to the agent. 

• An output variable is influenced only by input variables and/or 
internal variables of the agent and influences only variables 
external to the agent. 

• An internal variable is influenced by, or influences, only other 
variables of the agent i.e. internal, input or output variables. 

 
An agent must contain at least one input variable and one output variable, 
and must include ALL variables that are internal consequent on these input 
and output variable sets. 

 
The rationale for this definition is to express a minimum intuitive requirement 

for an agent: an agent “perceives”, “decides”, and “acts”. A minimal agent 
according to this definition may be very simple, no more than an input and an 
output, or it may be highly complex and “cognitive” – neither is precluded. 
Typically, the agents (or representations of agents depending on your viewpoint) 

 
3 E.g. “An agent is a computer system that is situated in some environment and that is capable of 
autonomous action in this environment in order to meet its design objectives” (Wooldridge, 2002, 
p.15) 
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in current agent-based social simulation studies rarely comprise more than a few 
rules and variables. Notice that according to this definition two agents may or may 
not be disjoint – consider that the audience in a lecture is both a single agent and 
made up of many agents. Agents may also be nested. 

Algorithm (e), FIND AGENTS, is able to discover the agents, in this sense, in 
a production system. However, at present it is limited to finding agents that have 
exactly one input variable and exactly one output variable. In outline pseudo-code 
FIND AGENTS is as follows: 
 
Foreach possible pair of variables V_input, V_output 
 

 {Find the set of variables S1 directly or indirectly 
influenced by V_input 

Find the set of variables S2 that directly or 
indirectly influence V_output 

If V_input is not itself a member of S1  
and V_output is not itself a member of S2 

then, provided the intersection of 1 and S2 is not 
null, 

the union of S1 and S2 is an agent 
} 

 
 

When applied to the standard lecture PS model given earlier, this algorithm 
finds no agents as is to be expected. There are only three variables in the model, 
and its structure is too simple for it to have agent content. However, when the 
model is developed so that explicit perceptual input and appearance output 
variables are associated with the class (for details see Appendix A), then the three 
variables now constituting the class are indeed recognised as an agent, as also are 
the variables that together constitute the “environment” of the class. 

Using the above definition it is possible to make precise, for example, how two 
or more minimal agents may be viewed as a single agent (compare Bosse and 
Treur, 2006). It is an open question how best to strengthen the definition to render 
the agents it delimits more clearly cognitive whilst keeping the definition 
sufficiently precise for purpose. 

 
7. Agents and Abstraction 
 
It is natural to ask under what conditions agents existing in a PS model are 

preserved under the abstraction process. A plausible conjecture is that if 
abstraction steps are constrained always to use pairs of variables that are either 
both within or both outside every agent in the model, those agents will either be 
preserved or reduced to a single variable (thereby ceasing to be an agent) by 
abstraction.  Agents will never be introduced by the abstraction step. However, 
were two variables one within and one outside an agent to be combined, then this 
would be likely to destroy agenthood. Hence it seems that there do exist 
conditions under which abstraction preserves agents until they are reduced to 
single variables. The significance of this insight is that if the original set of agents 
in a model is an important part of our view of the target system to which the 



 10

model relates, in practice we may wish an abstraction process to have this agent-
preserving property. More generally, we can ask for each type of macro-structure 
that we find of interest in the PS model under what conditions it is preserved 
under abstraction. 

 
8. Discussion and Conclusion 
 
This paper has addressed automatic analysis of a model to gain insights into its 

behaviour. Few would dispute that in principle such analysis can be useful. But 
the practical value of the lines of attack presented in this paper depends not just 
upon the computational feasibility of the algorithms discussed, which has been 
shown at least for simple cases, but also on the possibility of creating non-trivial 
PS models in the first place. There is no doubt that constructing PS models of the 
type we have considered is potentially laborious and intricate, primarily because 
there are no intra-rule variables, and because the value sets must be small. Some 
systematisation of the model creation process looks essential. Models with 
“spatial” structure may be relatively easy to construct. There are other options. It 
may be possible to specify models in a higher-level language and then 
automatically compile them down to the simple PS level considered here. Or it 
may be possible to “lift” the analysis algorithms somewhat. If either of these 
options proves effective, then the burden upon the model creator(s) will be 
correspondingly reduced. 

It is trivial that if models are faulty, then algorithmic analysis of them will 
yield faulty “insights”. Thus the algorithms presented here rely for their practical 
value on the validity of the models to which they are applied. Nothing has been 
said in this paper about model validation. We have concentrated entirely on ways 
of finding out what is the behaviour of a given model from its computational 
form. 

We finally conclude that to the extent that valid PS models can be created, and 
analysis algorithms of the type described above applied to them – and analysis of 
large models comprising hundreds of rules is quite tractable – then these 
techniques promise to be useful alongside (not, of course, instead of) the standard 
methods of agent-based social simulation.  
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APPENDIX A 
 

There follows the rule set for the standard lecture model with added structure. 
This structure takes the form of a variable classp that mediates perceptions made 
by the class and a variable classa that mediates the external appearance of the 
class. The three variables classp, class and classa are then collectively recognised 
as an agent by FIND AGENT. The variables classa, lecturer, content and classp 
are also collectively recognised as an agent (in effect, the agent’s “environment”), 
itself a sequential combination of two agents. 
 
lecturer / speaking-well & content / knowledgeable =>  
classp / well-k 
 
classp  / well-k => class / very-interested 
 
lecturer / speaking-poorly & content / knowledgeable =>  
classp / poorly-k 
 
classp / poorly-k & class / bored  =>  
class / somewhat-interested 
 
classp / poorly-k & class / very-interested   =>  
class / somewhat-interested 
 
lecturer / speaking-well & content / ignorant  =>  
classp / well-i 
 
classp / well-i & class / bored => class / somewhat-interested  
 
classp / well-i & class / very-interested  =>  
class / somewhat-interested 
  
lecturer / speaking-poorly & content / ignorant   => classp / 
poorly-i 
 
classp / poorly-i => class / bored 
 
class / very-interested => classa / very-interested 
 
class / somewhat-interested  => classa / somewhat-interested 
 
class / bored => classa / bored 
 
classa / bored => lecturer / speaking-well 
 
classp / poorly-k & class / somewhat-interested  =>  
class / bored 
 
classp / poorly-i & class / somewhat-interested  =>  
class / bored 
 
classp / well-i & class / somewhat-interested => class / bored  
 
classp / poorly-i & class / somewhat-interested =>  
class / bored  
 


