
 1

EPOS 2006
Epistemological Perspectives on Simulation

II Edition
University of Brescia, Italy
October 5-6, 2006

Algorithmic Analysis of Production Systems used
as Agent-Based Social Simulation Models

Jim Doran*

Algorithmic analysis of models is quite common in general, but is rarely attempted in the

context of agent-based social simulation. We explore the algorithmic analysis of simulation
models that take the form of production systems as these are defined in computer science. Several
implemented analysis algorithms for a particular type of production system are discussed,
including algorithms for agent discovery and for model abstraction. Examples of the use of these
algorithms are given and their potential briefly considered.

Key Words: model analysis, production systems, agent discovery, model abstraction

* Department of Computer Science, University of Essex, Colchester CO4 3SQ, UK

 2

1. Introduction: Model Analysis

Agent-based social simulation relies upon the precise specification of a model

in, typically, a computer programming language such as C++ or Prolog, or a
multi-agent system oriented software environment such as SWARM or SDML,
and then the repeated execution of the model on a computer to acquire sufficient
experimental data for reliable conclusions about its behaviour to be drawn.
However, as has long been recognised, this is not the only possible way to
proceed (e.g. Doran and Gilbert, 1994, section 1.2.2; Teran, Edmonds, and Wallis,
2001; Gilbert and Troitzsch, 2005). A model’s structure can sometimes be directly
analysed to obtain information about its behaviour without its ever being
executed. This can be a much faster means of obtaining properties of a large and
complex model than are systematic experimental trials (see Doran, 2005, 2006).
Furthermore, such analysis is arguably more natural in the sense that it
corresponds more directly to the mental processes of human beings when they
reflect upon dynamic systems and their behaviour.

However, it is also true that direct analysis of computer programs is very
difficult, often intractable. This prompts consideration of production systems (in
the computer science sense e.g. Wulf et al, 1981 pp 550-555; Russell and Norvig,
1995, p 314). In effect, production systems are programs in a certain class of
specialised “programming languages” (CLIPS is a well known example – see, for
example, Giarratano and Riley, chapters 7-10) that have full computational power
but are simple in structure and hence relatively easy to analysis. We emphasise
that production systems can capture complex social phenomena, including agents
that learn and communicate, just as well (or as badly) as any other program1.

Here we define a class of production systems, and hence production system
models, and use this definition to seek to design algorithms of practical use that
analyse realistic models, particularly as regards the agents that they contain, the
abstractions that they support, and the interactions between agents and abstraction.

2. Production Systems

DEFINITION: A production system (PS) as we define it (definitions elsewhere

vary in detail) comprises three parts:

A set of variables each with its own associated possible value set. No
variable may be associated with (i.e. bound to) more than one of its values
at the same time. A set of bindings that associates a value with each
variable is a state.

 A set of rules each in the form

set of variable/value bindings => single variable/value binding

1 We avoid mathematical logic based representations as they introduce complexity that seems
unnecessary for our purposes.

 3

in a suitable syntax. A rule has a “left hand side” (LHS) – the binding set -
- and a “right hand side” (RHS) – the single binding. Rules are not to be
interpreted to specify logical entailment, but rather consequence in time.
Given a state, the rules generate a successor state.

An execution procedure that matches all rule LHSs to the existing state
variable/value bindings and executes in parallel those rules that match by
asserting the corresponding RHS bindings. Hence the current set of
bindings is updated and a successor state generated. Bindings that are not
updated by a rule execution persist unaltered to the successor state
(compare frame axioms and their use, Russell and Norvig, 1995, page
206).

Importantly, we specify that matching rules are executed in parallel. The
“conflict resolution” issue prominent in alternative formulations of production
systems is thus not an issue here. It is replaced by the need to avoid assertion of
contradictory bindings (see later).

The execution procedure is invoked repeatedly, and a production system thus
generates a sequence of states. More abstractly, a production system implements
repeated invocation of a many-one mapping over the set of possible states.

The production systems we have defined have three key properties. Firstly,
there are no intra-rule variables, that is, rule LHSs do not have unbound variables
that are bound during matching and the bindings then used on the RHS. Secondly,
since matching rules are executed in parallel, the rule set of a PS must never set
contradictory bindings, that is, it must never happen that as one rule sets X/a
another sets X/b. Thirdly, it is assumed that value sets are finite and relatively
small. Thus we must work with quantitative variables as if they were qualitative
and design rules sets accordingly.

The foregoing three requirements are imposed to make algorithmic analysis
more tractable. They are both important and quite demanding. The burden of
meeting them falls upon the designer of the rule set ie the “programmer”.

3. Two Examples of Production System Models

DEFINITION: A production system model is a production system that is being

used as a model.

As a first example of a PS model, consider the following small set of rules that

model an aircraft landing (or crash landing!):

flight_status/in_air & engines/running &
pilot_status/ok => flight_status/landed

flight_status/landed => engines/not_running

engines/running & fuel/n => fuel/(n-1) (100 >= n >=
1)

fuel/0 => engines/not_running

 4

engines/not_running => altitude/ground-level

A plausible initial state is:

 flight_status/in_air
 engines/running
 fuel/100
 pilot_status/ok [contrast with pilot_status/faulty]

Given this initial state, then the next state will be:

 flight_status/landed
 engines/running
 fuel/99
 pilot_status/ok

From these rules, it is easy to see that in all circumstances the aircraft must
arrive at ground level with engines not running, whether or not pilot_status is
initially ok.

A second example PS model, this time modelling in outline a lecture being
given, is the following standard lecture model:

lecturer/speaking-well & content/knowledgeable
=> class/very-interested

lecturer/speaking-poorly & content/knowledgeable &
class/bored => class/somewhat-interested

lecturer/speaking-poorly & content/knowledgeable &
class/very-interested => class/somewhat-interested
lecturer/speaking-well & content/ignorant & class/bored
=> class/somewhat-interested

lecturer/speaking-well & content/ignorant &
class/very-interested => class/somewhat-interested

lecturer/speaking-poorly & content/ignorant =>
class/bored

class/bored => lecturer/speaking-well

//the lecturer tries
harder!

lecturer/ speaking-poorly & class/somewhat-interested
=> class/bored

content/ignorant & class/somewhat-interested =>
class/bored

A possible initial state for this model is:

 5

 lecturer/speaking-poorly

content/ignorant
 class/very-interested

It is reasonably easy to see by inspection of these rules that whenever content is
ignorant there will be an oscillation in the class’s level of interest between
somewhat-interested and bored.
In this model there are, intuitively, just two agents: the lecturer and the class
(collectively). In the model each of these agents comprises a single variable,
which is counter-intuitively simple. In general an agent within such a model will
consist of a subset of the system’s variables, some of them to be interpreted as
representing aspects of the agent’s mental state, with associated rules.

4. Analysis Algorithms

Working from the foregoing definition of a production system, algorithms have
been designed, programmed (in C) and tested to:

(a) Execute a production system
(b) Discover the prerequisite initial conditions of a specified

state of a PS
(c) Discover the stable states of a given PS
(d) Generate “powerful” abstractions of a given PS model.
(e) Identify the (minimal) agents in a given PS model

Algorithm (a), RUN PS, executes a PS and is relatively straightforward. In

pseudo-code:
 Repeat

{
Match all rule LHSs against current state and set
RHS bindings of matching rules into current
state, overwriting existing bindings as required

 }

Algorithm (b), PRECURSOR, uses “backward chaining” to find the precursor
states of a particular PS model state. In the aircraft-landing model, for example, it
enables algorithmic discovery of the fact that from all initial states the aircraft
arrives at ground level with engines still. It also enables discovery of all initial
states for the lecture model that lead to the class ending the lecture “very-
interested”. The algorithm is more complex than at first appears because of the
need to handle the “frame problem” (Russell and Norvig, 1995, page 207).

Algorithm (c), STABLE STATES, finds stable states for the production
system, that is states that once reached are never left. Finding stable points is a
standard and useful method of analysis for systems of differential equations.
Indeed, systems of differential equations have much in common with production
systems. This is illustrated by the fact that the standard methods of simulating
systems of differential equations (e.g. Runge-Kutta) proceed by first replacing
them by in effect a production system.

 6

A stable state of the standard lecture model turns out to be:

 lecturer/speaking-well

content/knowledgeable
 class/very-interested

5. Abstraction of a PS Model

A model of a lecture can be created at many levels of abstraction. A more

refined model than that given above might include representations of a chairman,
of slides and slide showing, and of a clock. More interesting and complex (and
more obviously social) are lecture models that include representations of the
mental states of the individual members of the class, of learning processes in
individuals, and of interactions between class members. In fact, an elaborated
lecture model has been created and experimented with at approaching this last
level of detail. This is a production system with over one hundred rules. It
includes simple representations of slides being shown, of (three) class members
learning, and even of two of the class members playing the little game of “paper,
scissors and stone”.

Several researchers have investigated algorithmic abstraction of models,
notably Zeigler (1990), Fishwick (1995), and Ibrahim Y and Scott P (2004). It is
standard to see models that are abstractions of a base model as the outcome of
behaviour preserving homomorphisms. The difficulty is to decide what we mean
by “good” abstractions and actually to find them given an original base model.
Our approach here is unusual in that we see abstraction as a process best applied
to a production system without reference to any interpretation it may have as a
model or to any particular type of structure (e.g. agents) that an interpretation may
see within it.

More specifically, a set (or “space”) of alternative abstractions of a given base
model may be generated by sequences of abstraction steps. Here we specify an
abstraction step to be the combination of two variables into one, with the value
set of the new combined variable comprising the result of applying a randomly
chosen2 many-one mapping to the cross-product set of the value sets of the two
original variables.

In the work reported here (algorithm (d) above, ABSTRACTION) these
abstraction steps are used within a (heuristically guided) hill-climbing search (see
Russell and Norvig, 1995, page 112). Successive abstraction steps are chosen and
appended to the existing sequence of adopted abstraction steps. The choice
between alternative abstraction steps is made by always selecting the abstraction
step that is assessed as most promising.

The promise of an abstraction step is essentially measured as the (inverse of
the) number of indeterminate (ie one-many) abstracted state successions to which
the proposed abstraction step (and preceding step sequence) gives rise from a

2 Fully random choice is weak. Experimentation with heuristically guided but partially random
choice ongoing.

 7

sample of basic model state trajectories generated for the purpose. The rationale
for this approach is that we accept a “class”, say, as an abstraction of a set of
“students” if we find the concept of a class useful as a means to simple and sound
predictions and explanations.

In pseudo-code, ABSTRACTION is:

 Input the base model

Until no further abstraction is possible
 {
 Generate a set, S, of alternative abstraction
steps

Select and adopt the most promising abstraction
step from S by testing each possible abstraction
step on an ad hoc sample of state trajectories.

 }

Applying ABSTRACTION to the standard lecture model yields the following
simple abstract model that highlights the possible oscillation:

 V/x => V/x
 V/p => V/q
 V/q => V/p

This model has just one variable, and it is apparent that either the state is
constant (V/x) or it alternates between V/p and V/q.

Finding powerful abstractions potentially provides insight into the essential and
significant behaviour of a model and of the phenomena that it models (compare
Gilbert, 2006). The existing algorithm can generate a range of more abstract
models from the standard lecture model listed above and highlights key
behaviours. Experimental application of ABSTRACTION to the elaborated
lecture model is ongoing.

The strategic difference between this approach and those mentioned earlier is
that we define abstraction operations at the “fine-grained” level – that is, at a level
below that at which such macro-phenomena as agents are naturally considered --
and that we have deployed a standard search procedure to locate good abstracted
models in the space of possible abstracted models.

6. Agents in a PS Model

Can a PS model contain (representations of) agents? The answer is surely yes

(see earlier). With each agent in the model interpretation there may be associated
a subset of the model’s set of variables, some of them reflecting presumed
“mental” and “emotional” attributes. A subset of the rules may also be associated
with a particular agent. Other variables and rules will represent interactions and
the agents’ collective environment. It is thus natural to ask the following question.
Can the agents that a model creator(s)’s interpretation of the model suggests to be
present within it, be detected by an “objective” algorithm that has no access to the
interpretation?

 8

For example, in the foregoing lecture model there are intuitively just two
agents, the lecturer and the class. But would an objective analysis of the
production system itself reveal these two agents. In other words, do the agents in
an agent-based model have a real computational existence beyond the
interpretation read into the model by its designer and users? Should they? Can
there be other agents in the model that its creator is not aware of, that is, which are
in some sense emergent from the model’s structure? We suggest that the ability to
discover the minimal agents formally present in a PS model enables comparison
with the set of agents the model’s designer conceives as present, possibly leading
either to modification of the model or of the model design concept.

However, defining in computational terms just what is an agent in the context
of a PS is difficult, and widely recognised to be so. Standard textbook definitions
are either too specialised or too ambiguous to offer much help3. We define a
minimal agent in a production system by reference to the notion of “influence” as
follows (adapted from Doran, 2002):

One variable in a production system is said to influence another when
there exists at least one rule that refers to the former on its LHS and binds
the latter on its RHS.

A minimal agent is a non-empty subset of the variables of a production
system. These variables must each be one of input, output, or internal
variables where the meaning of these agent variable types is defined by
reference to influence.

• An input variable is influenced only by variables external to the
agent and influences only output variables and/or variables internal
to the agent.

• An output variable is influenced only by input variables and/or
internal variables of the agent and influences only variables
external to the agent.

• An internal variable is influenced by, or influences, only other
variables of the agent i.e. internal, input or output variables.

An agent must contain at least one input variable and one output variable,
and must include ALL variables that are internal consequent on these input
and output variable sets.

The rationale for this definition is to express a minimum intuitive requirement

for an agent: an agent “perceives”, “decides”, and “acts”. A minimal agent
according to this definition may be very simple, no more than an input and an
output, or it may be highly complex and “cognitive” – neither is precluded.
Typically, the agents (or representations of agents depending on your viewpoint)

3 E.g. “An agent is a computer system that is situated in some environment and that is capable of
autonomous action in this environment in order to meet its design objectives” (Wooldridge, 2002,
p.15)

 9

in current agent-based social simulation studies rarely comprise more than a few
rules and variables. Notice that according to this definition two agents may or may
not be disjoint – consider that the audience in a lecture is both a single agent and
made up of many agents. Agents may also be nested.

Algorithm (e), FIND AGENTS, is able to discover the agents, in this sense, in
a production system. However, at present it is limited to finding agents that have
exactly one input variable and exactly one output variable. In outline pseudo-code
FIND AGENTS is as follows:

Foreach possible pair of variables V_input, V_output

 {Find the set of variables S1 directly or indirectly
influenced by V_input

Find the set of variables S2 that directly or
indirectly influence V_output

If V_input is not itself a member of S1
and V_output is not itself a member of S2

then, provided the intersection of 1 and S2 is not
null,

the union of S1 and S2 is an agent
}

When applied to the standard lecture PS model given earlier, this algorithm
finds no agents as is to be expected. There are only three variables in the model,
and its structure is too simple for it to have agent content. However, when the
model is developed so that explicit perceptual input and appearance output
variables are associated with the class (for details see Appendix A), then the three
variables now constituting the class are indeed recognised as an agent, as also are
the variables that together constitute the “environment” of the class.

Using the above definition it is possible to make precise, for example, how two
or more minimal agents may be viewed as a single agent (compare Bosse and
Treur, 2006). It is an open question how best to strengthen the definition to render
the agents it delimits more clearly cognitive whilst keeping the definition
sufficiently precise for purpose.

7. Agents and Abstraction

It is natural to ask under what conditions agents existing in a PS model are

preserved under the abstraction process. A plausible conjecture is that if
abstraction steps are constrained always to use pairs of variables that are either
both within or both outside every agent in the model, those agents will either be
preserved or reduced to a single variable (thereby ceasing to be an agent) by
abstraction. Agents will never be introduced by the abstraction step. However,
were two variables one within and one outside an agent to be combined, then this
would be likely to destroy agenthood. Hence it seems that there do exist
conditions under which abstraction preserves agents until they are reduced to
single variables. The significance of this insight is that if the original set of agents
in a model is an important part of our view of the target system to which the

 10

model relates, in practice we may wish an abstraction process to have this agent-
preserving property. More generally, we can ask for each type of macro-structure
that we find of interest in the PS model under what conditions it is preserved
under abstraction.

8. Discussion and Conclusion

This paper has addressed automatic analysis of a model to gain insights into its

behaviour. Few would dispute that in principle such analysis can be useful. But
the practical value of the lines of attack presented in this paper depends not just
upon the computational feasibility of the algorithms discussed, which has been
shown at least for simple cases, but also on the possibility of creating non-trivial
PS models in the first place. There is no doubt that constructing PS models of the
type we have considered is potentially laborious and intricate, primarily because
there are no intra-rule variables, and because the value sets must be small. Some
systematisation of the model creation process looks essential. Models with
“spatial” structure may be relatively easy to construct. There are other options. It
may be possible to specify models in a higher-level language and then
automatically compile them down to the simple PS level considered here. Or it
may be possible to “lift” the analysis algorithms somewhat. If either of these
options proves effective, then the burden upon the model creator(s) will be
correspondingly reduced.

It is trivial that if models are faulty, then algorithmic analysis of them will
yield faulty “insights”. Thus the algorithms presented here rely for their practical
value on the validity of the models to which they are applied. Nothing has been
said in this paper about model validation. We have concentrated entirely on ways
of finding out what is the behaviour of a given model from its computational
form.

We finally conclude that to the extent that valid PS models can be created, and
analysis algorithms of the type described above applied to them – and analysis of
large models comprising hundreds of rules is quite tractable – then these
techniques promise to be useful alongside (not, of course, instead of) the standard
methods of agent-based social simulation.

 11

References

Bosse T., and Treur J. (2006) Formal Interpretation of a Multi-Agent Society As a

Single Agent, JASSS, 9(2) http://jasss.soc.surrey.ac.uk/9/2/6.html
Doran, J. E. (2002) Agents and MAS in STaMs. In: Foundations and

Applications of Multi-Agent Systems: UKMAS Workshops 1996-2000, Selected
Papers (eds. M. d’Inverno, M. Fisher, M. Luck, and C. Preist), Springer
Verlag, LNAI 2403, 131-151.

Doran J. E. (2005) Iruba: an Agent Based model of the Guerrilla War Process. In:
Representing Social Reality, Pre-Proceedings of the Third Conference of the
European Social Simulation Association (ESSA), Koblenz, Sept 5–9, 2005, ed
Klaus G Troitzsch, Folbach. Pp 198-205.

Doran J. E. (2006) Modelling a Typical Guerrilla War Proceedings IEEE
DIS2006 Workshop (Knowledge Systems for Coalition Operations strand),
Prague, June 2006.

Doran J. E. and Gilbert N., (1994). Simulating Societies: an Introduction. In:
Simulating Societies (Eds. N. Gilbert and J.E. Doran) UCL Press, pp 1-18

Fishwick, P.A., (1995) Simulation Model Design and Execution. Prentice-Hall.
Giarratano J and Riley G (1989) Expert Systems: Principles and Programming,

PWS-Kent Pub. Co. Boston.
Gilbert N., (2006) Kiss and Tell: in praise of abstraction. EPOS 2006, Brescia
Gilbert N. and Troitzsch K., (2005) Simulation for the Social Scientist UCL Press:

London (2nd ed.)
Ibrahim Y. and Scott P. (2004) Automated Abstraction for Rule-Based Multi-

Agent Systems. Proc. ESSA 2004, Valladolid, Spain
Russell S. and Norvig P. (1995) Artificial Intelligence, a modern approach.

Prentice Hall.
Teran O., Edmonds B., and Wallis S. (2001) Mapping the Envelope of Social

Simulation Trajectories In: Multi-Agent-Based Simulation (eds. S Moss and P
Davidsson) Springer LNAI 1979 pp. 229-243

Wooldridge M. (2002) MultiAgent Systems Wiley and Sons: Chichester.
Wulf W.A., Shaw M., Hilfinger P.N. and Flon L. (1981) Fundamental Structures

of Computer Science, Addison-Wesley
Zeigler B. P. (1990) Object-Oriented Simulation with Hierarchical, Modular

Models: intelligent agents and endomorphic systems. Academic Press.

 12

APPENDIX A

There follows the rule set for the standard lecture model with added structure.
This structure takes the form of a variable classp that mediates perceptions made
by the class and a variable classa that mediates the external appearance of the
class. The three variables classp, class and classa are then collectively recognised
as an agent by FIND AGENT. The variables classa, lecturer, content and classp
are also collectively recognised as an agent (in effect, the agent’s “environment”),
itself a sequential combination of two agents.

lecturer / speaking-well & content / knowledgeable =>
classp / well-k

classp / well-k => class / very-interested

lecturer / speaking-poorly & content / knowledgeable =>
classp / poorly-k

classp / poorly-k & class / bored =>
class / somewhat-interested

classp / poorly-k & class / very-interested =>
class / somewhat-interested

lecturer / speaking-well & content / ignorant =>
classp / well-i

classp / well-i & class / bored => class / somewhat-interested

classp / well-i & class / very-interested =>
class / somewhat-interested

lecturer / speaking-poorly & content / ignorant => classp /
poorly-i

classp / poorly-i => class / bored

class / very-interested => classa / very-interested

class / somewhat-interested => classa / somewhat-interested

class / bored => classa / bored

classa / bored => lecturer / speaking-well

classp / poorly-k & class / somewhat-interested =>
class / bored

classp / poorly-i & class / somewhat-interested =>
class / bored

classp / well-i & class / somewhat-interested => class / bored

classp / poorly-i & class / somewhat-interested =>
class / bored

